
c 

I J 

JPL Publication 87-6 

. Approximating the Linear 

for Hereditary Systems With 
Delays in the Control . - 

w 
I Quadratic Optimal Control Law 

Mark H. Milman < 

- 

(NASA-CR-181161) A P P B O X I f l A T I N G  THE L I N E A H  ~a7-25813 
Q U A D R A T I C  OPTKHAL CONTROL LAW FOR HEPEDITABY 
SYSTEBS WITH D E L A Y S  I N  THE CONTROL [Jet 
P r o p u l s i o n  Lab.) 7 0  p A v a i l :  N T I S  HC Unclas 
AO4/MP A01 C S C L  1 2 8  G3/64 0085245 

March 15,1987 

, 
NASA 
National Aeronautics and 
Space Administration 

. 

- .  

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

~ 

/ 



JPL Publication 87-6 

I -  
I -  

Approximating the Linear 
Quadratic Optimal Control Law 
for Hereditary Systems With 
Delays in the Control 
Mark H. Milman 

March 15,1987 . 

NASA 
National Aeronautics and 
Space Ad ministration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 



The research described in this publication was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 

Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 



ABSTRACT 

I .  

The fundamental control synthesis issue of establishing a priori convergence rates 

of approximation schemes for feedback controllers for a class of distributed parameter 

systems is addressed within the context of hereditary systems. Specifically, a 

factorization approach is presented for deriving approximations to the optimal feedback 

gains for the linear regulator-quadratic cost problem associated with time-varying 
functional differential equations with control delays. The approach is based on a 
discretization of the state penalty which leads to  a simple structure for the feedback 

control law. General properties of the Volterra factors of Hilbert-Schmidt operators 

are then used to  obtain convergence results for the controls, trajectories and feedback 

kernels. Two algorithms are derived from the basic approximation scheme, including a 

fast algorithm, in the time-invariant case. A numerical example is also considered. 
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1. INTRODUCTION. This report -represents a first applic*ation of the control synthesis 
technique based on factorization methods developed in [24]. The main significance of 

the results contained herein stems from our ability to obtain a detailed analysis of a 
priori convergence rates for numerical approximation of feedback controllers for  a 
class of distributed parameter systems. Although in the past 15 years much work has 

been done in developing approximation schemes for various distributed controllers, the 

important issue of convergence rates has been largely neglected. This is due primarily 

to  the fact that it is a difficult problem, and control researchers have been content 
with the first order assessment regarding whether or not their approximation scheme 

converges a t  all (in certain correct senses). In this report convergence rates are 

established in the context of a challenging class of problems that include control delay 

terms. The underlying methods are of particular importance since they more tightly 
connect the modeling and control synthesis problems, and hence, have application to 
other distributed parameter systems. 

The particular problem we address is the computation of the optimal feedback 
gain for the finite time linear regulator quadratic cost problem for systems governed by 

retarded functional differential equations (R FDE) with control delays. Feedback 

control laws for these systems have been previously derived for both the finite and 

infinite time problems in several articles under various hypotheses (see for example [6], 

[13], 1141, 1171, [24], 1251). A common approach in several of these articles is t o  relate 
the BFDE with control delays to an evolution equation in an appropriate state space. 

The feedback control law then arises in the familiar form as a solution to an operator 

Biccati equation. However, when point delays appear in the control, an unbounded 

input operator results and this operator then appears in the quadratic term of the 
Biccati equation. The presence of this unbounded term would appear to complicate any 

analysis of approximation schemes for the feedback gains. 

The approach in 1241 utilizing factorization theory [ l l ] ,  1221, allows us to 

circumvent these difficulties. The interest here is to further pursue the approach of 

(241 to  the problem of approximating the optimal feedback kernel and deriving 
convergence estimates for the approximations, and the resulting controls and 
trajectories. (We note some other applications of factorization include for  example, 

filtering and smoothing of nonstationary processes over a finite interval [15], [16], 
inverse problems in the spectral theory of differential operators [8], [18], solutions to 

two point boundary value problems [21], and solutions to  Fredholm equations of the first 
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and second kinds, [ l l] ,)  Although this specific problem has not to this author's 

knowledge been treated in the literature, several articles (e.g., [ti] ,  [lo],  [19J) have 

considered the approximation problem without control delays. 

The approach in each of these articles involves expressing the RFDE as an 

evolution equation in the state space R xL2, and then approximating the resulting 
dynamical system. Delfour [SI discretizes in both the spatial and time variables, while 

Kunisch 1191 and Gibson [lo] discretize in only the spatial variable. Delfour considers 

the time-varying problem and obtains weak convergence of the solutions to  the 
approximating Riccati equations. In 1101 and [19] the open-loop semigroup is first 

approximated by discretizing the history space, and then the approximation theory of 
[ 9 ]  is used for subsequent convergence analysis. This analysis is based on exploiting the 

relationship developed in [9] between the open-loop semigroup and the Riccati equation 
defining the feedback law. Open loop semigroup approximations have been derived in 
121, [3]. By careful considerations involving the adjoint semigroup together with 

properties deduced from the finite dimensionality of the control space, Gibson was able 

to  demonstrate strong convergence of the approximating Riccati operators. When 

coupled with the finite dimensionality of the input space, this leads to uniform 
convergence of the feedback operators. This is a significant result with respect t o  

control implementation, since with uniform convergence the optimality of the 
approximating feedback law is independent of the state. 

N 

The convergence analysis presented in [lo] and [19] depends heavily on the fact 

that  the control map has finite rank. This condition does c3t hold in the control delay 

problem and straightforward extensions of these convergence results to the control 

delay case are not apparent. However, the form of the feedback kernel derived in 1241 

remains amenable to  approximation and convergence analysis regardless of the presence 

of control delays. The reason for this is that control delays do not present any 

complications in the open loop formulation of the optimal control law and that the 

relationship between open loop and closed loop is somewhat transparent in the approach 

of [24] - the feedback kernel is derived from linear operators involving the fundamental 

matrix of the BFDE and the solution to a certain factorization problem associated with 
the fundamental matrix. Convergence questions for approximations to the feedback 

gain then reduce to  corresponding questions regarding convergence of solutions to  

2 
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related factorization problems. We  note that the integral Biccati equations of 191 are 
also equivalent to certain factorization problems [23], so that the convergence analysis 

in 1101 and [k9] can also be performed within a factorization context.) 

- 

It will be shown that if the cost on the state in the regulator problem i s  a discrete 

sum with no integral term, then the associated factorization problem is solved by 
matrix inversion, and the exact feedback kernel can be defined in terms of the 

fundamental matrix solution, quadrature, and the solutions to finite dimensional linear 

equations. (This form of the solution generalizes a result of Manitius 1201 for the 
problem with terminal state penalty and no control delays.) Thus an approximation 

scheme for the problem containing an integral state penalty term can be developed by 

approximating this term by quadrature and solving exactly for the feedback kernel of 

the resulting discretized state cost problem. Using this approach together with 

factorization arguments we will be able to establish O(l/n) Lao - convergence for the 
approximate feedback kernels in the time-varying control delay case. 

. 

This result is (analytically) somewhat sharper than Gibson’s in that the Lm 
convergence of the kernels applies on the square as well as the diagonal, and also that 
a priori rates can be provided. The principal reason this sharper result can be obtained 

is that we exploit the fact that only a computable piece of the semigroup - that part 
contributed by the fundamental matrix solution - is required to define the feedback 

kernel. Thus it is never necessary to  consider the more difficult problem of 
approximating the entire semigroup. We now briefly outline the organization of the 

report .  

h Section 2 the necessary mathematical preliminaries are developed and 
discussed. Because the approach does not follow along a Biccati synthesis of the 

solution, we will recapitulate in this section portions of the discussion in [24) relevant 

t o  the present application - particularly certain aspects of the Volterra factorization 

and how they apply to the BPDE control problem. 

Section 3 contains the Lao - convergencz results for the feedback kernels, controls, 
and trajectories. Instead of considering specific quadrature schemes approximating the 

state cost, all the results are proved with respect t o  8 sequence of Bore1 measures 
satisfying certain convergence hypotheses. The key tool of this section is a 
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factoriaation lemma which asserts that the factorization problem is well-posed (in an 
appropriate sense) in the space of integral operators with essentially bounded kernels. 

In Section 4, the explicit form of the optimal feedback kernel associated with 

discrete state cost is derived. The resulting approximation scheme developed from the 

cost discretizations is then used as an analytical tool t o  obtain further results regarding 

the feedback kernel. For example, using essentially matrix manipulations, a 
Wiener-Hopf integral equation for the optimal feedback kernel is derived which is 
shown to  be the control delay generalization of the Wiener-Hopf equation Manitius 1201 

had previously derived for the feedback kernel via a maximum principle. 

In Sectim 5 two algorithms representing implementation. of the basic 

approximation scheme of Section 4 are derived. In the time-invariant case a fast 

algorithm is derived by exploiting the near Toeplitz structure of the system of 
equations that defines the feedback kernel. A simple numerical example is also 

presented. 

2. PRELIMINARIES. L e t  [-r, TI d e n o t e  a c l o s e d  and bounded i n t e r v a l  i n  t h e  

r e a l  l i n e  wi th  r L 0 and T > 0, and l e t z d e n o t e  the  c l a s s  of Bore1 subse ts  of 

[-r, TI. For an a r b i t r a r y  Banach space  Y, [ y  r i l l  deno te  t h e  norm of an 

e l e m e n t  y e Y, B(Y. 2) ri l l  deno te  t h e  space  of bounded l i n e a r  maps from Y 
i n t o  8 n o t h e r  Banach s p a c e  2, and f o r  b r e v i t y  r e  w r i t e  B(Y)  f o r  B(Y,Y). 
Subscr ip ts  rill sometimes be a t tached  t o  the  norm of an element t o  remove any 

ambigui t ies  t h a t  might a r i s e  due t o  the f a c t  t ha t  severa l  d i f f e r e n t  t o p o ~ o g i e s  

rill be used i n  the  repor t .  The no ta t ion  A* ( r e spec t ive ly  A') rill be used t o  

denote the ad jo in t  (transpose) of an opera tor  (matrix). 

- -. 

In t h e  seque l  t h e  Banach space  of c o n t i n u o u s  f u n c t i o n s  C([-r .  TI, RN) 
rill be denotod X, tho Hi lbe r t  Sp8Ce L2 ([-r, TI, RM) rill be denoted U, and H 
ri l l  d e n o t e  t h e  H i l b e r t  space  Lz([-r,T], RN). Nor def i n e  t h e  r e s o l u t i o n  of  
t h e  i d e n t i t y  E: - B(U) by m u l t i p l i c a t i o n  by the c h a r a c t e r i s t i c  fanc t ion ,  

i .0 .  [ E ( u ) ~ l ( t )  = X(@)( t )u ( t )  (X(u)(t)  = 0 i f  t Y, X(o)(t)=l i f  t e 0 1 ,  and 

l e t  Pt denote the family of p ro jec t ions  E([-r, tl). The complementary family,  
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I - Pt, w i l l  be denoted Pt. Note t h a t  Pt i s  s t rong ly  continuous, 

i .0 .  t P t u  i s  c o n t i n u o u s  f o r  each u 8 U. 

I n  t h i s  s ec t ion  we s h a l l  r e v i e r  some of the r e s u l t s  i n  E241 pe r t a in ing  t o  

t h e  l i n e a r  r egu la to r  problem wi th  dynamics 

and quadra t i c  cos t  func t iona l ,  

(2.2) 
J -r J -r 

I n  (2.11, we assume t h a t  d ( t )  i s  con t inuous ,  x(*)  8 X, ueU, B&B(U,H)  and  

Po i s  (It would not a f f e c t  subsequent convergence 

a n a l y s i s  of the feedback ke rne l s  t o  a l l o w  an 8 r b i t r a r y  p ro jec t ion  P to 8 [- 

r, TI, i n  place of Po. The choice to 0 r e f l e c t s  the problem formula t ion  i n  

which c o n t r o l  p o l i c i e s  cannot  be implemented u n t i l  t i m e  t = 0.1 The o n l y  

c o n s t r a i n t  we impose on B a t  t h i s  t i m e  is t h a t  i t  be c a u s a l ,  Le., f o r  each  

the pro jec t ion  E([O, TI). 

to '  

t e [ - r ,T l ,  i f  01 = '2 8.0. on [ O , t ]  then  (BuI ) ( s )  = ( B U z ) ( S )  f o r  8.e. s - < t. 

The m a t r i x  v a l u e d  f u n c t i o n  q i s  assumed m e a s u r a b l e  on R I B and i s  

normalized so t h a t  q(t ,e)  = o f o r  e F o 8nd q ( t , e )  = q(t ,-r)  f o r  e - 
r. It i s  f u r t h e r  assumed t h a t  q ( t , * )  is l e f t  c o n t i n u o u s  f o r . e a c h  t and t h e r e  
e x i s t s  8 fmCtiOn I 8 Ll(0.T) such t h a t  

1v.r q ( t , * ) l  r ( t)  (2.3 1 

where 1.1 d e n o t e s  any m a t r i x  norm. In t h e  c o s t  (2.2). p d e n o t e s  an a r b i t r a r y  

p o s i t i v e  r e g u l a r  Bore l  measure  on [-r,Tl, and  a(* )  i s  B o r e l  m e a s u r a b l e  w i t h  
Q(r)  - > 0 p - 8.0. s and i s  p -  e s s e n t i a l l y  bounded. 
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It i s  convenient a t  t h i s  t ime t o  introduce some ope ra to r s  a s soc ia t ed  wi th  

' the  op t imiza t ion  problem (2.1) - (2.2). We define: 

1 0  t e  t-r,Ol 

J 
-r 

and the adjoint-l ike P#, 

(2.4) 

(2.5) 

(2.6) 

where P ( t , r )  ~P0B*Y'(t;)]'(s) and Y(t,r)  i s  the  fundamental ma t r ix  s o l u t i o n  

of the  homogeneous problem (see [12]). Y(*,*) sa ti rf i e s  the  Vol t e r r a  eqaa t i o n  

and the s o l u t i o n  t o  (2.1) can be r e a l i z e d  a s  

(2.8) 
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Also, sup I Y ( t 8 i ) l  < -, Y(t,s)  i s  a b s o l u t e l y  c o n t i n u o u s  t o r  t 1 s f o r  

each  s, and Y ( t , * )  i s  of bounded v a r i a t i o n  f o r  each  t. We n o t e  from t h e  

d e f i n i t i o n  of P ( t , s )  t h a t  F ( t , s )  0 f o r  8 <. 0. Hencer no * P and Po#= Ff 
Using 8 c o m p l e t i n g  t h e  s q u a r e s  argument8 t h e  open l o o p  c o n t r o l  law f o r  

(2.l) - (2.2) can be e a s i l y  derived i n  t e r m s  of t h e  opera tors  defined above. 

A 
Theorem 2.l. The optimal cont ro l  u fo r  t he  r egu la to r  problem (2.1) - (2.2) i s  

Proof t241 

In (243 t h e  f e e d b a c k  c o n t r o l  l a w  f o r  (2.1) - (2.2) was d e r i v e d  f rom t h e  

open l o o p  c o n t r o l  above u s i n g  a f a c t o r i z a t i o n  approach. In a n  e f f o r t  t o  

motivate t h i s  8pprO8Ch and rake the report  somerhat more self-contained, we 

w i l l  b r i e f l y  r e t r a c e  some of the s t eps  i n  (241 l ead ing  t o  the feedback law.  

To s k e t c h  how t h e  f a c t o r i z a t i o n  i d e a s  a r i s e  i n  t h e  f e e d b a c k  c o n t r o l  

s y n t h e s i s ,  w e  rill c o n s i d e r  f o r  convenience t h e  c a s e  p = Lebesgue measure, 

Q(*) = I, U = E, and B = t h e  i d e n t i t y  ope ra to r .  Using (2.7) we can  t h e n  w r i t e  . 
(2.1) - (2.2) 8 s  

min < x , t >  + <u,u> (2.9) 
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x - f + l h  (2.10) 

where  <.,*) i s  the i n n e r  p r o d u c t  on U (re c a n  a l s o  t a k e  X = U i n  t h i s  

formulation),  T 8 B(U) i s  t h e  Hilbert-Schmidt oporator 

Standard arguments then give the  optimal cont ro l  so lu t ion  P̂  as 

A 
u = -(I + TOT)-lTOfo 

If w e  now c o n s i d e r  (2.9) - (2.10) w i t h  t h e  modif i c a t i o n  t h a t  u t P$, 

t 2 0 ,  and r e p l a c e  f by an  a r b i t r a r y  f o r c i n g  t e r m  f t ,  t h e  s o 1 o t i o n  t o  t h i s  
modified problem is r e a l i z e d  as 

ut A = -(I + PtT*TPt)"PtT*f t o  

Using a pr inoip lo  of op t ima l i ty  (see 1241) it can be shown t h a t  t h e  choice 

f t  = pt[TPte + f l  i n  the modified problem l eads  t o  Gt = PtU f o r  each t. Thus, 
given a p a r t i t i o n  of [-r ,Tl,  -r = to < tl ( *** tn = T, i t  f o l l o w s  t h a t  

A 

(2 0 1 1  

0 
W i  

va lues  a re  determined by €'ti fti. 

[ti, ti+11. Next, examining t h e  t e rm P T ftia i t  is e v i d e n t  t h a t  i t s  
> td 

And f o r  s - .t i ,  



0 

But the  above i s  recognized as t he  so lu t ion  t o  

where G(s) i s  the optimal t ra jec tory .  The v a r i a t i o n  of cons tan ts  fOrplU18 then 
implies f o r  s - > ti, 

Thus t h e  o p t i m a l  c o n t r o l  i n  (2.11) a t  t i r e  t c [ti,ti+ll only u s e s  t h e  

s t a t e  i n f o r m a t i o n  .(SI, s u [ti-r.tiI. This c o n t r o l  I ~ T  i s  now "open-loop" 

j u s t  on each subin terna l  [ti, tiill. The l i m i t  as the mesh of the p a r t i t i o n s  
i n  (231) tends t o  zero  would hopefully produce t h e  feedback solution. Tbis i s  

indeed  t h e  c a s e  (cf  12411, and a l though  we w i l l  n o t  go i n t o  a l l  of t h e  

s p e c i f i c s  regarding the  l i m i t i n g  procedure. we w i l l  b r i e f l y  d iscuss  the  very 

much r e l a t e d  not ion  of the  pro jec t ion  i n t e g r a l  (1111). 

A 

Using the  same no ta t ions  as before, l e t  6: [-r,TI + B(U). Assume t h a t  

G i s  s t rongly  continuous, i.8. t - G(t)u i s  continuous f o r  each u 8 U. Nor 

l e t  K 8 B(U) be  a Hi lbe r t -Schmid t  o p e r a t o r  and c o n s i d e r  Riemann sums of t h e  

foim 
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@i = [ t i , t i+l] ,  and ti a coi.  These sums can  be s h o r n  t o  converge  i n  t h e  
opera tor  norm as the mesh of t h e  p a r t i t i o n s  tends t o  zero  1111. Th i s  l i m i t  

i s  represented  by the p ro jec t ion  i n t e g r a l  

(2.13) 

Here I I H S  denotes the  Hilbert-Schmidt norm. 

Two i m p o r t a n t  p r o j e c t i o n  i n t e g r a l s  on t h e  space X of Hilbert-Schmidt 

maps i n  B(U) a r e  o b t a i n e d  f rom t h e  s e l e c t i o n s  G + ( t )  = Pt and G ( t )  = Pt i n  
(2.l2). The r e s u l t i n g  mappings p+.  

- 
- 

a r e  bounded p r o j e c t i o n s  on*. I f  K 6 E ( p + )  we say t h a t  K i s  c a u s a l  

( a n t i c a u s a l ) .  In t h e  s e q u e l  r e  

s h a l l  8180 w r i t e  K +  for p+(K). t h a t  PtU and PtU a r e  i n v a r i a n t  

- 
The e l e m e n t s  of E(p+) a r e  q u a s i n i l p o t e n t s .  - 

Note 8180 - - 
rubspace8 Of p- 5). rOSpOCtiVely. + 

We n o t e  t h a t  i n  t h e  space  U a H i l b e r t - S c h m i d t  map K i s  n e c e s s a r i l y  an 
In t h i s  case p + a )  are  simply the i n t e g r a l  opera tor  wi th  kernel,  say t(t,s). 

Vol t e r r a  opera tors  
- 

J 
'I 
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With t h i s  b i t  of background r e  can n o r  s t a t e  t h e  b a s i c  f a c t o r i z a t i o n  

r e s u l t s  t h a t  rill be used i n  the sequel. 

Theorem 2.2. (Gohberg-Krein). L e t  K Then t h e r e  e x i s t  unique 

opera tors  X, I R(p+) such t h a t  - - 

I + K = (I + X ) ( I  + X+) (2.14) - 
i f  m d  only if (1 + PtlKPt) i8 i nve r t ib l e  f o r  each t t [-r,TI. 
= (I + X 1-l - I i s  given by the project ion i n t e g r a l  

Furthermore, W - 
- 

The decompos i t ion  of (I + K) i n t o  t h e  p roduc t  i n  (2.14) i s  c a l l e d  t h e  

V o l t e r r a  o r  s p e c i a l  ( r i g h t )  f a c t o r i z a t i o n  of I + K, and r e  rill  somet imes  

r e f e r  t o  X, a s  t h e  c a u s a l  ( a n t i c a u 8 a l )  f a c t o r  of K. Note t h a t  un iqueness  of  

the f a c t o r i z a t i o n  implies  t ha t  X 
- 

= a+)* when K i s  self-adjoint.  - 
Two r e s u l t s  t h a t  rill be useful  i n  subsequent convergence ana lys i s  a r e  

s t a t e d  as c o r o l l a r i e s  belor.  

C o r o l l a r y  2.3. Suppose K c &’is s e l f - a d j o i n t  w i t h  

sup I (I + PtKPtl-1l I 
t 

Then I + 1( h a t  t he  f a c t o r i z a t i o n  (2.14) and v+ = (1 + x+)-’-I s a t i s f y  - - 

< Iw,IHS - 
Corol la ry  2.4. Let I*, i = 1 , 2  be self-adjoint  with 



Let 1; - (I + XZ1-l - I r h e r e  Xi denotes 
the  a d t i c a o s r l  fac tor  of Ki. Then 

Symmetry of the  argrrment with respec t  t o  K1 and K2 gives the r e s a l t . / /  

. R e t u r n i n g  now t o  t h e  c o n t r o l  s o l u t i o n  i n  (2.111, i t  can be s h o r n  t h a t  

t h e  Riemann sums 

eonver ge 

r h e r e  X 

t o  the pro jec t ion  i n t e g r a l  

8 the  causal f a c t o r  of TOT, i. 

I + T*T - (I  + X%I + XI. 

Nor g i v e n  an element h 8 L2([-r,T],U) 

a t t a c h  meaning t o  the express ion  

T* 

i t  i s  f a r t h e r  p o s s i b l e  ( s e e  1231) t o  

(2.15) 
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as a limit of sums 

i-1 

where the  sequence of simple func t ions  

c o n v e r g e s  i n  L ~ ( [ - ~ , T ] D U )  t o  h. The e x p r e s s i o n  (2.15) i s  p r e c i s e l y  when 

h ( t )  i s  chosen  v i a  t h e  p r i n c i p l e  of o p t i m a l i t y ,  h ( t )  = P t l T P t t  + f l  (c f  
(2.11)) . 

Now w e  p roceed  t o  d e f i n e  t h e  feedback s o l u t i o n  t o  (2.1) - (2.2). This 
fo l lows  from a v e r i f i c a t i o n  of hypotheses and the eva lua t ion  of (2.l51, w i th  h 

chosen above. Complete d e t a i l s  can be found i n  1241. 

Def ine  t h e  H i l b e r t  s p a c e  E,, L2 ([-r,T], $v; p) a s  t h e  space  Of 

p - s q u a r e  i n t e g r a b l e  f u n c t i o n s  on [-r,Tl w i t h . r a 1 u e s  i n  RN. It i s  e v i d e n t  

t h a t  t h e  map Q :  Hp -+ Hp d e f i n e d  by ( Q x ) ( t )  = Q(t) x ( t )  i s  bounded and t h a t  

F# has the  r ep resen ta t ion  F# = P*Q where F* i s  the  a d j o i n t  of P considered as 

a mapping i n  B(U,Hp) .  i t  i s  v e r i f i e d  t h a t  

P#F i s  H i l b e r t - S c h m i d t ,  so t h a t  Theorem 2.2 i m p l i e s  t h a t  (I + F#F) h a s  t h e  
f a c t o r i z a  t i o n  

Hence, F#F = F'QF 1. 0. In 1241 

I + F#F = ( I  + X * ) ( I  + X) 

wi th  X causal.  

(2.16) 

. Nor l e t  W *  = (I + X*)-l  - I. Sinee I* i s  H i l b e r t - S c h m i d t  i t  h a s  a 

mat r ix  kerne l  W-(t,s). Next define t h e  Y x N mat r ix  valued func t ion  P(t,a) on 

1-r,Tl x [-r,Tl by 



where 

(2.17) 

and Y ( t , s )  d e f i n e d  a s  i n  (2.7). The f u n c t i o n  P ( t , a )  p r o v i d e s  t h e  f e e d b a c k  

so lu t ion  t o  the regulator problem, This is made p rec i se  i n  t h e  following. 

Theorem 2.5. The optimal feedback cont ro l  f o r  (2.l) - (23) is given by 

A 

where  x d e n o t e s  the  o p t i m a l  t r a j e c t o r y ,  and f o r  each  t, Pt d e n o t e s  t h e  

p r o j e c t i o n  on U, (P tn ) ( s )  = x[-r,  t l ( s ) u ( s ) .  Fur the rmore ,  P ( t , a )  i s  s q u a r e  

in t eg rab le  (Lebesgue measure) on both the diagonal and the square 1-r,Tl x 

t-r,Tlm 

3. CONVERGENCE RESULTS. The s p e c i f i c  o p t i m i z a t i o n  problem w e  s h a l l  be 

considering i s  the  following: 

14 



subjec t  t o  the c o n s t r a i n t  

The a s s u m p t i o n s  on q(-,*) a r e  the same a s  i n  t h e  p reced ing  s e c t i o n .  We 

n? 
S h a l l  assume t h a t  0 

IB(t,e)l = b < OD. 

ro > -q > ... ) -rk = -r and sop I B i ( t ) l  - b i  < =, 
t t, I n  t h e  c o s t  (3.1) we impose c o n t i n u i t y  on Q ( s ) .  

I n t e r p r e t i n g  these assumptions i n  the context of Sec t ion  2, we 

have  p = A + 6 where A d e n o t e s  Lebesgue measure,  b i s  t h e  D i r a c  measure  w i t h  

support on {TI, and Q(*) is  uniformly continuous on [-r,T) w i th  QCr) - Qo. 

Now c o n s i d e r  t h e  f o l l o w i n g  sequence {J,) of a p p r o x i m a t i o n s  t o  t h e  c o s t  

J (a, x 1 : 

15 



Pn i s  a sequence of p o s i t i v e  regular  Bore1 measures such tha t :  

El. pa IT-} - 1 f o r  a l l  n, 

E. Given t > 0 t h e r e  e x i s t s  m such t h a t  n 2 m imp l i e s  

Ipn[r,b) - lb-all < 6 f o r  a11 a < b, a,b t [-r,Tl. 

I n  t h i s  s e c t i o n  w e  w i l l  d i s c u s s  t h e  convergence  p r o p e r t i e s  of t h e  

s o l a t i o n s  and f eedback l a w s  c o r r e s p o n d i n g  t o  t h e  cost  approximations above. 
Henceforth we r e f e r  t o  the opt imiza t ion  problem w i t h  cos t  (3.1) as problem 9, 

and t h e  problem with c o s t  (3.5) a s  problem Unles s  o t h e r w i s e  no ted ,  

s u b s c r i p t s  appea r ing  on o p e r a t o r s ,  f u n c t i o n s ,  e t c .  (e.g. P#,) w i l l  i n d i c a t e  

t h a t  these  terms are assoc ia t ed  w i t h  problem Pn. 

V e  begin wi th  the following simple r e s u l t .  

Lemma 3 3 ,  Let p be defined I S  above and l e t  s a t i s f y  and H2.  Then 
I - 6 --.--* 1 (Lebesgue measure) i n  t h e  w* topology of C*(-r,T). 

Proof.  Choose 8 > 0 and l e t  f t  C(-r,T). Lot  x { t i ) q = o  be a p a r t i t i o n  

of [-r,Tl such  t h a t  f o r  I t  - 81 < 1x1, l f ( t )  - f ( s ) l  < t .  Then, 

n-1 

110 J -r 

and 

J 
-r 1-0 



By 82,  SUP IPJ [-r,T)I = k < '4 Nor choose m such t h r - t  m' > m i m p l i e s  

Hence, 

And the  lemma is proved.// 

Since by d e f i n i t i o n  F ( t ,  s) = tPoB*Y'(t ,*)l ' (s)  ( c f  (2.5)-(2.6)), 

from (3.4) i t  fo l lows  

(3.6) 

where 

8nd 

Nor l e t  y sup I Y < t , s ) l .  Then using 112, p.1491 rnd t h e  bounds i n  (3.4) 

wo havo 

(3.7) 
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and 

It i s  n o t  d i f f i c u l t  t o  show ( s e e  [241) t h a t  F# - F*j . F$ = F * j n  where  F 
i s  t h e  B-space a d j o i n t  of P, i.e. F*: X* --* U. and j D  j n  a r e  t h e  m a p p i n g s  of 

x i n t o  x*# 

Nor i t  f o l l o w s  e a s i l y  from d e f i n i t i o n  and t h e  e s t i m a t e s  above t h a t  F is 
compact. (from 

Lemma 3.11, it can then be deduced t h a t  - p# strongly. Consequently from 

the  compactness of F it  a l s o  fo l lows  tha t  €$ -F#F naiformIy= Noting the  

f o r m  o f  t h e  open  l o o p  c o n t r o l  l a w  ( i n  Theorem 2.118 t h e s e  g e n e r a l  

c o n s i d e r a t i o n s  * r e  enough t o  d e m o n s t r a t e  t h e  L2 - convergence  of t h e  
approximate optimal c o n t r o l s  and t h e  uniform convergence of t h e  corresponding 

optimal t r a j e c t o r i e s  r e s u l t i n g  from approximations based on gn* However, t he  
major aim of t h i s  sec t ion  i s  t o  produce t h e  s t ronge r  L, - convergence of t he  

a p p r o x i m a t i o n s  f o r  t h e  f eedback  k e r n e l s  as  w e l l  a s  t h e  c o n t r o l s .  and t h i s  

r e q u i r e s  

Thus. using the  w*- convergence of jnG) - J(x) f o r  each x 

a somewhat more specif  i c  analysis.  

L e t  Z d e n o t e  the space  L,([-r,T],RM). 
i s  e v i d e n t  t h a t  F# and PC a r e  a l s o  i n  B(X,Z). 

conve rgence  of  F% --$ Pd d i s c u s s e d  above. 

From t he  d e f i n i t i o n  of  P ( t , s )  it 
Our f i r s t  r e s u l t  s h a r p e n s  t h e  

This r e s u l t  (and t h e  method of 
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proof) rill form t h e  b a s i s  f o r  t h e  - convergence arguments l a t e r .  

Lema 3.2. p#p- F# s t rong ly  i n  B(x,z). 

Proof. Let x u X. By d e f i n i t i o n  

k 

t#-F#,]=: t A cJf;(.. t)Q(s)x(s)d(p-pn) ( 8 )  0 

For each i def ine  

S imi la r ly  def i ne  

and 

x , ( s , t )  = 

?, 

Cons ide red  as  f r a i l i e s  0.f f u n c t i o n s  p a r a m e t e r i z e d  by t, ( f i ( ' D t ) )  is 
e q u i c o n t i n u o o s  by v i r t u e  of (3.7)-(3.9). r n d  (ai(*,  t ) )  and ( x i ( * D  t ) )  a r e  

e q u i c o n t i n o o u s  by v i r t u e  of t h e  uniform c o n t i n u i t y  of  Q(*) and x ( * ) ~  

respec t ive ly .  Furthermore these f ami l i e s  a r e  c l e a r l y  uniformly bounded 

Hence the set 
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is  r e l a t i v e l y  compact i n  C((-r,T],RM). Nor note t h a t  

Using t h e  compactness of S i t  f o l l o w s  f rom Lemma 3.1 t h a t  t h e  f i r s t  

i n t e g r a l  above converges t o  zero uniformly wi th  r e spec t  t o  t. And s ince  the 

second i n t e g r a l  has constant integrand f o r  each t and i, uniform convergence 

i s  obtained hero by using no//  

Now let H ( t , s )  and En( t , s )  denote the  kerne ls  of F#F and FfF respec t ive ly .  

Fobinis theorem implies 

Arguing a s  i n  the  previous lemma w e  can show t h a t  a,(t,s) converges 

uniformly t o  H( t , s ) .  To see t h i s  note t h a t  f o r  each f ixed  i and j 

1-r, s+rj I 
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2r 
where Q j ( u , s )  and f j ( u , s )  a r e  defined a s  in Lemma 3.2 .nd  

Uniform convergence  of t h e  i n t e g r a l s  p a r a m e t e r i z e d  by V f o l l o w 8  i n  t h e  

manner of t h e  proof  of t h e  l emma.  Since t h i s  a rgument  a l s o  h o l d s  f o r  

s u b s e t s  of the form {(s , t ) :  8 + r j  < t + r i ) ,  1 0  o b t a i n  t h e  f o l l o w i n g  
t e s u l  t. 

Lemma 3.3. With t h e  n o t a t i o n s  above, H n ( t , s )  + E ( t , s )  u n i f o r m l y  on 
In p a r t i c u l a r ,  €fF - F#F i n  t he  Hilbert-Schmidt topology I-r,Tl x 1-r,Tl. 

( i n  B t U ) )  and i n  t h e  B ( Z )  topology.  

To o b t a i n  L, - convergence  of t h e  f e e d b a c k  k e r n e l s  we w i l l  u s e  a r e s u l t  
ana logous  t o  t h e  one above r e g a r d i n g  t h e  convergence  of t h e  kernels of t h e  

V o l t e r r 8  f a c t o r s  of (1 + FfF). and Lemma 

3.3. t o  o b t a i n  Hi lbe r t -Schmid t  convergence of t h e  f a c t o r s  (hence, L2 - 
convergence of t h e i r  kernels). But  our u l t ima te  i n t e r e s t  is  t o  demonstrate 

Already we can u s e  C o r o l l a r y  2.4 

6%- T 1 .. . - . - . - . . .  ...... L -- r r r r r m r r  -= - eunvcrgcncr  ua w e  ACLYG;,. w e  ~ P I A A  Y w w u  bus L U L A U W A U ( S  ~ W G  

r e s u l t s  which a r e  of some i n t e r e s t  i n  t h e i r  own right.  

P r o p o s i t i o n  3.4. Lo t  K be a n  i n t e g r a l  o p e r a t o r  on U w i t h  e s s e n t i a l l y  

bounded k e r n e l  K ( t , s ) ,  e s s s u p  I K ( t , r ) l  = fl < -. SUppO8e t h a t  
t ,s 

8uPI(I+Ptmt)-1I I a < 0 

t 

80 t h a t  (I + I[) has the f a c t o r i z a t i o n  

I + K = (I + X')(I + X) (3.12) 

w i t h  c a u s a l  (cf Theorem 2.2). Then W = ( I .+  XI-' - I and W' a r e  i n t e g r a l  

2'1 



opera to r s  w i th  kernels V+(t,r)  s a t i s f y i n g  the bound - 

where 

(3.13) 

Proof.  F i r s t  n o t e  t h a t  C o r o l l a r y  2.3 i m p l i e s  W 
Schmidt with IVlns 2 aklas 

(I + X1-l - I i s  H i l b e r t -  

Nor t h e  f a c t o r i z a t i o n  (3.l2) imp l i e s  

Subs t rac t ing  t h e  iden t i ty  from t h e  above and applying t h e  p r o j e c t i o n  p, (Le. 

taking an t i causa l  p a r t s )  r e s u l t s  i n  f o r  e t r  

where X-(t,e) and W+(t,8) a r e  the  kerne ls  of X* and V respec t ive ly .  

Hence f o r  8.0. t , B ,  

Consequently, 
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N o r  (3.12) also implies 
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Subt rac t ing  the i d e n t i t y  and applying- p, y i e l d s  

v* + 

Hence, 

As t h e  r e s u l t  above may be r e g a r d e d  a s  t h e  L, ana logue  of C o r o l l a r y  2.3D 

the  next proposi t ion is the  L, analogue of Corol lary 2.4. Tho no ta t ions  X, W D  

X2 ( t a r )  and 8,  ( t , s )  r i l l  have the  same meaning below a s  i n  tho  p r e c e d i n g  

p r  opo s i  ti on. 
- 

Proposi t ion 3.5. Let K be as i n  t he  propos i t ion  above and l e t  {Kn) denote 

a sequence of in tegra l  opera tors  on U with  e s s e n t i a l l y  bounded kerne ls  & ( t D s )  

such t h a t  

The r e s u l t  follows from 3.14.// 

8nd 

Let  V n ( t , s )  denote the kernel of the i n t e g r a l  opera tor  (I + &,)-I - 1. 
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Then 

- 

where Ir, = (I + X0)-l(Kn - )O (I + X)-l. By Propos i t ion  3.4 est  sup 

I f ,  ( t , s ) l i  a NOW s i n c e  I + I, h a s  t h e  f a c t o r i z a t i o n ,  so 

(I + X,)(I + W). 

t , s  t o r  some a < 0 .  

doas I + An. S p e C i f i C 8 l l y ,  I + A n =  (I  + Y i )  (I + Y,) where  I + Yn = 

It then fo l lows  from the i d e n t i t y  

I + PtAnPt (I + PtYEPt) (I + PtYnPt) 
tha  t 

Here we have used Corol la ry  2 3  t o  ob ta in  the  f i r s t  term i n  the PrOdUCt, 

and t h e  f a c t  t h a t  f is Eilbert-Schmidt and quas in i lpo ten t  toge ther  w i th  17 ,p. 

10391 and Caro l Ia ry  2.3 t o  o b t a i n  the second term. Now def ine  Zn = 

(1 + Yn)-' - I and l e t  Z,(t,s) denote i t s  kernel. Then s ince  

Propos i t ion  3.4 impl ies  
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ri t h  

% 

pn p n f l  + a(T + r)  + a2(T+ r)'] 

and 

F i n a l l y ,  no te  t h a t  

so t h a t  

? , %  
But p(an ,pn)  = O ( B r r ) .  This completes t h e  proof.// 

B e f o r e  p roceed ing  t o  t h e  main r e s u l t  of t h e  s e c t i o n  r e  r i l l  make a 

d ig res s ion  t o  e s t a b l i s h  L, converaence of t h e  approximate cont ro l  sequence and 

t r a j e c t o r i e s .  For no ta t iona l  

convenience r e  a l so  introduce the subspace X o c  x Of i n i t i a l  conditions,  

Again we l e t  Z denote the  space L,([-r,T],RM). 

8nd endor i t  w i t h  the subspace topology. 

Theorem 3.6. L e t 5 3  d e n o t e  t h e  u n i t  b a l l  i n  C ( [ - r ,O l ,RN) .  For d a d ?  l e t  

un(d) and u(d) denote the optimal con t ro l s  f o r  problems gn and 9 respec t ive ly .  

A l so  l e t  X n ( d )  and x(d) d e n o t e  t h e  c o r r e s p o n d i n g  t r a j e c t o r i e s .  Then, 

m i f  o r r l y  o n 3 ,  

A A 

A A 
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Proof. Le t  I 839. Theorem 2.I g ives  t h e  optimal  cont ro l  law 88 

&(d)  - -(I + *)-1*(I - L)'G 

z L1 

where d 8 xo i s ' t h e  e x t e n s i o n  Of 4 such t h a t  d ( t )  = d ( 0 )  f o r  tl.0. 

Now (I - L)'ld i s  recognized 8 s  the  so lu t ion  t o  the  homogeneous problem 
m 

w i t h  i n i t i a l  c o n d i t i o n  do 
(see 1121) g ive  

Denot ing  t h i s  - o l u t i  t d  a r g u m e n t s  

(3.16) 

(3.17) 

Thus  t h e  s e t  S. 

- i s  r e l a t i v e l y  compact i n  C([O,T],BN). NOW, t he  t r i a n g l e  i n e q u a l i t y  y i e l d s  

L e t  8 e s t  sup E , ( t , s )  f o r  a l l  n (cf (3.10) and Lemma 3.3).  
t ,s 
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. Also  l e t  Wn = (I + - I where X, i s  the causa l  f a c t o r  of F$, i .e.  

n u s ,  I 

NOW l e t  W,(t,s) denote t h e  kernel  of Wn. 
hn( t , s ) l  5 p ( l , 6 )  independently of n. 

Then Propos i t i on  3.4 imp l i e s  e s s  sup 
t 7s 

Hence, 

and consequently 

W e  a l s o  have  f r o m  (3J61, 

By L e m m a  3.2, Ft -w F# s t r o n g l y  i n  B(X, Z). R e c a l l  now t h a t  F ( t , s )  ( t h e  

k e r n e l  of F) r a n i s h e s  f o r  s < 0. Then s i n c e  S i s  r e l a t i v e l y  compact .  i t  

f o l l o w s  t h a t  (Pi - # ) ( I  - L1-l 4 0 u n i f o r m l y  i n  B(X,.Z). This r e s u l t  and 

Lemma 3.3 t oge the r  with (339)  - ( 3 3 1  i n s e r t e d  i n t o  ( 3 3 8 )  proves the  f i r s t  
a s s e r t i o n  of the theorem. 

28 



Thus (ii) fo l lows  from (i).// 

~ Next  w e  p r e s e n t  t h e  0 v e r g e n c e  p r o p e r t i e s  f t h e  s e q u e n c e  of  

rpproxima t i n g  feedback kernel  I. 

Theorem 3.7. L e t  P,(t,a) 8nd P ( t , a )  deno te  t h e  f eedback  k e r n e l s  of 

Theorem 2.5 8SSOCiated wi th  problems gn and 9 respect ivety.  Then, 

(1) l i m  erstsup IP,(t,t) - P ( t , t ) l  = 0 ,  

(ii) l i m  ess 8- IP,(t,a) - P( t , a ) l  = 0 .  
n 
n t ,a  

Proof .  From (237) - (238) re w r i t e  

L T  

J 
1-0 a 

where 

rnd 
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Thus, 

k T 

i=o a 

J 
a 

N o r ,  

s-r 

lKn, i ( t ,S)  - K i ( t , S > I  - IWn(t,e) - W(t,e)I I f i ( s , O )  I I Q ( t ) I d e  < J  t 

Lemma 3 3  and Proposi t ion 3.5 imply t h a t  

i im css SUP lwn(t,e) - w(t,e)l = 0 .  
n t,e 

And s ince  Ifi(s,B)I and IQ(s)l a r e  uniformly bounded, r o u t i n e  arguments y i e l d  

a measurable s e t  (1 C 1-r,Tl whore complement has  z e r o  Lebesgue measure such 

t h a t  

Kn, i ( t , s )  -+ K i ( t , s )  uniformly on 0 x [-r,Tl. 

Using t h e  uniform boundedness of Y(s,a) and t h e  sequence of measures b, 
i t  fo l lows  t h a t  the f i r s t  i n t e g r a l  i n  (3.22) tends  t o  zero  uniformly on 0 x 

[-r,Tl. To prove convergence of the  second i n t e g r a l  in (332) we argue as i n  

Lemma 3.2. Define t h e  f a m i l y  of  f u n c t i o n s  p a r a m e t e r i z e d  by a and  8, 
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It i s t ra ight forward  t o  ve r i fy  using t h e  p rope r t i e s  of ri(t#s) 
t h a t  the  s e t  

nd P(s,a) 

i s  r e l a t i v e l y  compact i n  C ([-rDT], RxxN).  Thus t h e  argument  i n  L e m m a  3.2 
app l i e s  here  t o  demonstrate t h a t  

And the theorem is proved.// 

4. APPLICATIONS. In t h i s  s ec t ion  we begin by der iv ing  the  optimal feedback 

kernel  a s soc ia t ed  wi th  an a r b i t r 8 r y  d i sc re t e  s t a t e  cos t  penalty. It rill be 

evident  t h a t  given the  fundamental r r t r i x  Y ( t D s ) D  the feedback kernel  i n  t h i s  

Case can be d e r i v e d  by . q u a d r i t u r e  and m a t r i x  i n v e r s i o n .  T h i s  f eedback  
s t r u c t u r e  r h e n ' c o r b i n e d  wi th  the results of the  precedina s e c t i o n  leads t o  

a p p r o x i m a t i o n s  t o  the  o p t i m a l  feedback k e r n e l  of problem 9 ( r e c a l l  (3.1)- 
( 3 3 ) ) D  8 VienerHopf cha rac t e r i r a t ion  of t h i s  kernel. and a p r i o r i  bounds on 
i t s  magnitude. 

Le t  u denote a p o s i t i v e  d i sc re t e  measure on [-r,T] of t h e  form 
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I n s e r t i n g  t h i s  measure i n t o  (2.2) r e s u l t s  i n  the cos t  

1 
The o p t i m a l  feedback  k e r n e l  f o r  t h i s  c o s t  has t h e  f o l l o w i n g  s e m i s e p a r a b l e  

8 truc ture 

Theorem 4.1. Define t h e  matrix func t ions  G ( t )  and P(t)D 

N 

Q =  

Then t h e  o p t i m a l  feedback  k e r n e l  P ( t , a )  f o r  t h e  problem w i t h  dynamics  (2.1) 
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(4.3) 



Proof. It is s t r a igh t fo rward  t o  v e r i f y  t h a t  t h e  map F#P r e s u l t i n g  from 

t h e  measure  3 i n  (4.1) i s  an i n t e g r a l  o p e r a t o r  w i t h  s e p a r a b l e  k e r n e l  
'G'( t )%s) .  Now Theorem 2 5  impl ies  

Here 

and  V-(t,u) d e n o t e s  t h e  k e r n e l  of t h e  a n t i c a u r a l  o p e r a t o r  V* in t h e  

f ao t  o r i za  t i o n  

(I + F#FP = :I + W(I + f). 
Using the  f a c t  t h a t  F#F h8s I separable  kernel, i t  can be v e r i f i e d  

[ l l , p 1 8 8 1  t h a t  

w i th  U ( t )  defined a s  i n  (4.3). Thus we can w r i t e  

Noting t h e  d e f i n i t i o n s  of G,  and U, it follows 
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d e n o t e  a m u l t i p l i c a t i o n  o p e r a t o r ,  Le. ( B u ) ( t )  = B ( t ) u ( t ) ,  t h e n  (4.2) r e d u c e s  

Manitius' result f o r  te rmina l  s t a t e  pena l ty  t201 

T 

Thus Theorem 4.1 can  be v i ewed  a s  an e x t e n s i o n  of t h i s  r e s u l t  t o  p r o b l e m s  

rith con t ro l  delays and 8 r b i t r 8 r y  d i s c r e t e  S t8 t e  p8n8ltY. 

Now l e t  pn be a sequence of d i s c r e t e  p o s i t i v e  measures s a t i s f y i n g  E1 and 

H2, and l e t  Pn ( t , a )  d e n o t e  t h e  c o r r e s p o n d i n g  f e e d b a c k  k e r n e l s .  The theorem 

i m p l i e s  each  P n ( t , a )  h a s  t h e  s e m i s e p a r a b 1 e  form (4.21, w h i l e  Theorem 3.7 

i m p l i e s  t h e  L, convergence  of Pn( t , a )  t o  P ( t , a ) ( t h e  o p t i m a l  f eedback  k e r n e l  

f o r  p rob lem91  and 8180 t h e  L, convergence of Pn( t , t )  t o  P( t , t ) .  
subsc r ip t s  i n  the obvious way, def ine  f o r  each n, 

Introducing 

v n ( t )  = CI + ~ n ( t 1 1 - 1  - I 
so t h a t  the  i d e n t i t y  

v n ( t )  -un ( t ) [ I  + ~ n ( t 1 1 - 1  

holds. Multiplying by G:(t)& we ob ta in  

.c 

G;(t)%V,(t) - G A ( t ) < U n ( t ) l I  + Un(t )3"  

- G ' n ( t ) c [ I  + Un(t)l"Un(t) 

men using t h e  d e f i n i t i o n  of u n ( t )  and mul t ip ly ing  by Yn( i t  fo l lows  t h a t  

G A ( t  )kt1 + Un(t ) l"Gn(a)G; (a )~da~n(cr )  i (4.4 1 

Ly 

G; ( t 1 Ovn ( t iY, ( a) = 
t 



From (4.2) and the  d e f i n i t i o n  of Vn(t)  we have f o r  a L t 

And subs t i t u t ing  (4 .4 )  i n t o  t h e  r b w e  

t (4.5 1 

Now l e t  pn d e n o t e  t h e  i n t e g r a l  o p e r a t o r  w i t h  k e r n e l  P,(t,a). We t h e n  

recognize q(t)&[I + Un(t)1-lGn(u), with u 2 t, as  the  kernel  of t he  operator  

[PnBI-. Also  q ( t ) % Y n ( a )  i s  r ecogn ized  a s  t h e  k e r n e l  of PtY, where  Y i s  t h e  
opera tor  i n  B(H,X) def ined 

- e  

Xu: t -w Y(t , s )u(s )ds .  i 0 

Thus (4.5) represents  the  Wiener-Hopf equation 

Le t  P denote the operator  with kernel P ( t , a ) .  Then s ince 

(4.6) 

(where t h e  l a t t e r  i s  e s s e n t i a l l y  Lemma 3 3 1 ,  by con t inu i ty  of the  p r c j e c t i o n  

p, on the space of Hilbert-Schmidt maps TO ob ta in  

P = (F#Y)- - [(PB)-F#Yl- 

We formalize t h i s  d i scuss ion  i n  the following. 

(4.7) 

C o r o l l a r y  4.2. The Wiener-Hopf e q u a t i o n  (4.7) h a s  a unique  H i l b e r t -  

Schmidt  s o l u t i o n  P. A v e r s i o n  of t h e  k e r n e l  of P i s  t h e  o p t i m a l  f eedback  
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kerne l  f o r  the opt imiza t ion  problem 3 (3 . l )  - (3.2). Furthermore t h i s  ve r s ion  

of t he  kerne l  can be approximated i n  t h e  L, topology on t h e  diagonal as w e l l  

as t h e  square by the semiseparable  ke rne l s  P n ( t , a ) .  

Proof. We only need t o  prove t h e  uniqueness a s s e r t i o n .  Suppose the re  

e x i s t  two H i l b e r t - S c h m i d t  s o l u t i o n s  o f  (4.7) 8nd l e t  6 d e n o t e  t h e i r  

d i f fe rence .  Then we o b t 8 i n  

C lea r ly  i t  i s  s u f f i c i e n t  t o  show t h a t  (6B) -  = 0.  Define 

u 

so t h a t  x- = 6. lhen s ince  B i s  causal i t  fo l lows  t h a t  (6B) -  = (6B)- 8nd 

Mult iplying by B and no t ing  t h a t  YB = P (cf (3.6) and (4.6)) 

We w i l l  show t h 8 t  zero is the only  s o l u t i o n  t o  the equat ion  

thus  proving (6B)- = 0 ,  8nd t h e  r e s u l t .  Nor (4.8) is equ iva len t  t o  

wi th  I( an t i causa l .  Since F#F L O ,  t h e r e  e x i s t s  a causa l  Hilbert-Schmidt map V 
such th8t 

I + P#F - (I + VWI + VI. 
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Thus X so lves  (4.8) i f  and only i f  z solves 

z + tzvl-= 0. 

(These s o l u t i o n s  ' a r e  r e l a t e d  by X = Z(1 + V*)".) 
r8pping &?on t h e  space of Hilbert-Schmidt opera tors  

Next 

Then (4.9) i s  e q u i v a l e n t  t o  (I + 9 ) Z  = 0. Now by in,Act,on we 

g n ( z )  = [zvn I,, 

SO t h a t  

IYm(Z)l L Izl,slvnl. 

(4.9) 

c o n s i d e r  t h e  

f in1 h a  

But V is q u a s i n i l p o t e n t ,  hence so i s  LZ'. Thus t h e  o n l y  s o l u t i o n  t o  (4.9) 

i s  Z =  0, 8nd t h e  theorem i s  proved.// 

W e  note t h a t  t h e  e x i s t e n c e  p o r t i o n  of t h e  c o r o l l a r y  was proved  i n  a 

d i f f e r e n t  manner i n  1241. 

m e n  B i s  a mul t ip l i c8 t ion  operator,  (PB)- W, so t h a t  (4.7) becomes 

P = (&I, - tPBFh1,. 
The kerne l  of p#X i s  e a s i l y  computed t o  be of t h e  form B ' ( t ) A ( t , s )  where 

L e t  A d e n o t e  t h e  o p e r a t o r  w i t h  k e r n e l  A ( t , s )  and n o t e  t h a t  #X = BOA. 

Next consider the  following modification of t he  WienetEopf equation (4.71, 
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Using t h e  same t e c h n i q u e s  a s  i n  t h e  p roof  of C o r o l l a r y  4.2 i t  i s  p o s s i b l e  t o  

show t h a t  (4.lO) has a unique Hilbert-Schmidt s o l u t i o n  no. Also note t h a t  the 

c o r o l l a r y  implies B h o  = P. The Wienex-Hopf equation (4.lO) i s  equivalent t o  

the parameterized fami ly  of Predholm e q u a t i o n s  M a n i t i u s  1201 d e r i v e d  v i a  a 

maximum pr inc ip l e  f o r  ob ta in ing  t h e  feedback kernels:  
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C o r o l l a r y  4.2 extends  t h i s  Wiener-Hopf c h a r a c t e r i z a t i o n  of t h e  f e e d b a c k  

k e r n e l  t o  problems w i t h  c o n t r o l  d e l a y s ,  and  s i m u l t a n e o u s l y  p r o v i d e s  

approximate s o l u t i  ons. 

The s p e c i a l  f a c t o r i z a t i o n  h a s  been  p r e v i o u s l y  e x p l o i t e d  i n  s o l v i n g  

WienerHopf equations on f i n i t e  i n t e r v a l s  of the type (4J0)-(4.11) t h a t  a r i s e  

i n  inverse problems i n  t h e  s p e c t r a l  theory of d i f f e r e n t i a l  opera tors  [81,[181, 

and i n  the  f i l t e r i n g  and smoothing problems f o r  nons ta t ionary  processes [ l S ] ,  

[161. The c o r o l l a r y  i s  i n  a sense a s o l u t i o n  f i n d i n g  t h e  r i g h t  Wiener-Hopf 

problem. 

Nor w e  r e t u r n  t o  t h e  o r i g i n a l  problem (3.1) - (3.3) and c o n s i d e r  a 

s p e c i f i c  sequence of measures f o r  g e n e r a t i n g  a p p r o x i m a t i o n s  t o  t h e  o p t i m a l  

feedback kernel.  

Let {p,) denote the  sequence of measures 

(4.12) 

T h i s  sequence  i s  e a s i l y  s h o r n  t o  s a t i s f y  E1 and 82. Now suppose t h e  

major iz ing  function m ( t )  (cf (2.3)) i s  bounded and the weighting func t ion  Q ( * )  

has a b o u n d e d  d e r i v a t i v e .  L e t t i n g  P n ( t , a )  d e n o t e  t h e  f e e d b a c k  k e r n e l  

c o r r e s p o n d i n g  t o  t h e  c o s t  w i t h  measure  pn, i t  i s  s t r a i g h t f o r r a r d  ( a l t h o u g h  



. 

t ed ious)  t o  der ive  a constant C from t h e  r e s u l t s  i n  Section 3 rach t h a t  

( 4 . 1 3 )  

!e c8a 8180 use t h e  approxim8tions 

on IP(t ,a)l  i n  t he  following way. 

Pn(t,a) t o  ob ta in  an a p r i o r i  bound 

F i r s t  observe t h a t  f o r  each t 

Thus . 

where  a l l  t h e  norms above arb o p e r a t o r  ( m a t r i x )  norms on t h e  ~ p p r o p r i a t e  

E u c l i d e a n  spaces-  Now f o r  each  a.lmn(a)l i s  bounded by lyn(a)lHs. (Here 

I - I H s  denotes t h e  Hilbert-Schmidt matrix norm which i s  t h e  square root  of the  

sum of the  squares of the  mat r ix  entries.) And 

n 1-0 

A s i m i l a r  bound holds f o r  l q ( t ) l*  
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i n d e p e n d e n t l y  of n. 

diagonal ) ,  t h e  same bound holds f o r  IP( t ,a) l .  

And S ince  p,(t,a) + P ( t , a )  ..e. (on t h e  s q u a r e  and 

The T- dependence (the l eng th  of the problem i n t e r v a l )  i n  the  bound f o r  

IP(t,a)/ can be expressed d i f f e r e n t l y  by not ing  t h a t  

T 
1 

And a f t e r  using the analogous bound on I G A ( t ) I  we ob ta in  

T 

a 

When t h e  system (3.1) - (3.4) is t i m e - i n v a r i a n t  and s t a b l e ,  8 bound 

independen t  of T can  be e s t a b l i s h e d  f o r  I P ( t , a ) l .  To s e e  t h i s  w e  t a k e  Q ( * )  = 

Q ( a c o n s t a n t  m a t r i x )  a n d  q(t ,8) = q(e) where a l l  t h e  r o o t s  of t h e  

charac t  e r i  s t i c  eqar t i o n  

a r e  a s s u r e d  t o  hare  n e g a t i v e  r e a l  p a r t .  

ope ra to r  B as 

Also f o r  s i m p l i c i t y  w e  d e f i n e  t h e  
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w i t h  l B o l ,  sup I B ( t ) l  < b. 
t? 

From t h e  a s s u m p t i o n s  on q(*) i t  can be shown U21 

t h a t  Y(t,a) = Y(t-a) w i t h  I Y < t > l  c exp(-pt) f o r  some c , p  - > 0 .  Thus, 

T a 

a 0 

Since t h e  Lap lace  transform 
the  i n e q u a l i t y  above t oge the r  

=r 

Cia) o f  Y ( t )  s a t i s f i e s  Y W  - A - ~ ~ x I ,  ( s e e  t1211, 
ri t h  Partuval8s formula y i e l d s  

Next no te  t h a t  

where 

S t r r i g h t f o r r a r d  approximations then y 

11/2 

eld 

41 



Thus# indepondont of the length of the problem interval,  

The results that have been presented thus far have emphasized 
the connections between factorization and the feedback kernels for hereditary systems 
with control delays, and have not focused on any of the implementation issues 
concerning the approximation scheme that has been defined. In this Section we will 
examine in greater detail algorithms based on Theorem 4.1. Particular attention will be 
paid to time-invariant systems. First, a quick remark about these algorithms in general. 

We note that it has already been observed that combining (4.2) with the 

discretizations (4.12) results in (most cases) an O(l/n) L-convergence of the feedback 
2 kernels . This result, which is also valid for time varying systems with control delays, 

is sharper than the approximations for the feedback operators obtained in [lo], 1191. 

Neither of these articles establishes a priori rates of convergence, nor do the 
convergence results that are established translate into Loo convergence of the kernels. 

The underlying reason why we are able to  obtain the stronger convergence is that we do 
not approximate the entire semigroup (or evolution operator), but only that piece that is 

contributed by the fundamental matrix (which we must solve for as a separate 

computation). In the general time-varying case with discrete state cost a t  the nodes 

{ S ~ X L = ~ ,  this amounts t o  solving the n+l Volterra equations 

In the time-invariant case these computations reduce to  the single Volterra equation 
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Once we have the solutions (5.1) or (5.2). the feedback structure (4.2) is straightforward 
and can be computed from quadrature, matrix inversion and multiplication. 

Of course we are not constrained to  directly solving (5.1) or (5.21, and we can use 

. other methods for obtaining the fundamental solution - e. g. state approximation 

methods 121, [SI, the method of steps (261, [27] or other available methods for solving 

Volterra functional differential equations [28], 1291, [SO]. Having said this, we assume 
throughout this section that the functions Y(t,s) and P(t,s) have been computed. (A 

couple of issues associated with these computations wil l  be addressed later.) 

One straightforward implementation of (4.2) consists in defining the grid {s ln i i = O  
SO that si-si-l = A = Tin, taking ai = A, and replacing the integral in (4.3) by a first 
order Euler quadrature with nodes fs.}. To see where this leads us, first write P(t,a) in 
the more symmetrical fashion 

1 

A 
Let U(s2 denote the approximation to  

h 
and form the approximations { P ( s ~ , s ~ ) } ~  t o  fP(si,Sj)} i* 

Now note that 
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(Recall that  M = dimension of the input space.) Thus, using the matrix identity, 

(X + YY')-' = x-l - x-ly (Y'X-lY + I)-lY~x-l 

A 
for compatible matrices X and Y, it follows that (I + Ubi - 1)) 

(f + U(si))-' in about 2MN2n2 operations. 

structure of P(*,.), a rough operation count shows that (P(s s 11 

in approximately 3MN2n' operations when M S N << n. 

can be updated from 

Further, exploiting the semiseparable 
can be computed 

A 

A 

i ' j  j r i  

Considering that there are more than W n 2 / 2  values in the matrices 

fP(Si,Sj)Ij i' this algorithm is fairly efficient. However, we will subsequently show 

that it is possible to  do substantially better in the time-invariant case. (We will also 

provide a more complete analysis in this case.) 

A 

For the remainder of this section we consider the problem defined by the dynamics 

dt) f 0, t c I-r,O] 

The 8ssumptions here are the same 8 s  in (3.1) - (3.41, except now everything is 
time-invariant. (Previously the lower limit in the integral defining the cost J was taken 
8s -r. This served as 8 notational ,expediency in the preceding sections, which we 
dispense with in the present section.) 



We will explicitly consider the discretizations of J, 

where i s  a regular partition of the interval [O,T] with mesh A = s - s. = T/n. i+l I 
(Although the mesh points of the partition change with n, we will not double subscript 
the si. This will not lead to  any confusion in the sequel.) We will also assume that the 

point delays in the control, ri, i=l, ... k, correspond to  some subset of the (si], i = 0,. ..a 

Again we let Pn ( e , * )  denote the optimal feedback kernel for cost J, and let 
P(.,-) denote the optimal feedback kernel for cost J. In the time-invariant case Var 
1q(1oI and Q(*) are constant, to that (4.13) holds for the sequence {P$*,*)l. The 
particular algorithm which we will be developing is based on approximately Pn ( ,* 1 a t  

the mesh points {si}; thus it is first necessary to  prove that (4.13) actually holds 
everywhere. Before showing this we need some notations and a couple of simple 
observations. 

For any matrix M, as before JMIHs denotes the Hilbert-Schmidt norm of M (the 

square root of the sum of the squares of its entries), and for specificity we write !MI, 
for the operator norm of M with respect t o  the corresponding Euclidean metrics. Note 
that WIHS 2 IMI,. 

The fundamental matrix solution Y(t,a) to  (5.4) (cf (2.7)) has the form Y(t,a) = 
Y(t-a). We ret 

and using 112, p. 149) we note that 

(5.7) 

Similarly F(t,s) (cf (3.6)) is 8 difference kernel, P(t,s) = F(t-s), and wing (5.7) and (5.8) 
we have 

(5.9) 

and 

IF(t) - F(s)Im = 0 ~ l t - s l ) ,  when t, s t  hi, ri+l) for some i, 0 S i Sk-1 (5.10) 

Lemml 5.1. Let P(t,a) denote the optimal feedback kernel for the problem (5.4) - 
(5.5). Then 

45 



(P(t,a) - P(t',a')l = 0 (It-t'l + la-a'l). 

Proof. From Theorem 2.5 we have 

T 

a 
P(t,a) = K(t,s)Y(s-a) ds, 

where 

S 
K(t,s) = F'(t-t) Q + J W - (t,dF'(s-U)QdU 

t 

Since sup IK(t,s)l < 00 (cf Proposition 3.4 and (5.9)),  it follows from (5.8) that 
tcs 

IP(t,a) - P(t,a')l < Ella-a'l 

for some constant K1 independent of t, a, a'. Thus using (5.7) it remains to  show the 
existence of a constant K2 such that 

Now F(t) has only a finite number of jump discontinuities, SO (5 .9 )  and (5.10) imply 

Hence, it i s  only necessary to  verify that 

To this end le t  W* denote the operator with kernel W - (t,d and let X* = 

(I+W*)-L-I. Denote the kernel of X* by X - (t,s). Also let  W and X denote the adjoints of 
W* and X* respectively, with respective kernels W+(t,s) and X+(t,s). Now the 
factorization (recall Theorem 2.5) 

implies 
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X* = [F'F] - + [F'FWI - , (5.12) 

IC where F F has kernel H(t,s), 

Note that 

(5.13) 

Now (5.12) is equivalent t o  

T 
X - (t,s) = H(t,s) i H(t,8) w+(B,s)de, a.e. s,t. 

S 

Because H(t,s) is continuous, X+ (t,s), W+ (t,s) are a h 0  continuous [ l l ] ,  and the equation 

above holds pointwise. Thus (5.i3) and the triangle inequality imply 
- 

independently of s. Then (5.11) follows from the estimate above and the resolvent 
identity, 

S 

w (t,s) + x - (t,s) + x - (t,a w - (e,s)de = 0.1 
t 

Proposition 5.2. sup IPn(t,a) - P(t,a)l = 0 (lid 
t,a c(O,T] 

Proof. Using the identity 

A [X+BA)-' = Al/' [I+A%A 1- A ' / a  1 ' /a  

for A,B L 0, write the feedback kernel (from Theorem 4.1) as, 
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T 
I 

8Ild 

Note the following bounds independent of n (recall (5.7) and (5.9)): 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Now f ix  (to, ao) c (O,T] x (O,T] with to S ao. Then there exist indices i, j such 
that (to, ao) c (si-l, 1.) x (s. , si], i 6 j. From (5.8) we obtain 

1 I- 1 

= 0 Wn). 

Similarly, expressing F(* )  8s 8 sum (as in (3.6)) and using (5.10) we obtain 
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. 



(5.22) 

But from (5.16) and (5.19) it follows that 

(5.24) 

Putting (5.21) - (5.24) together with the bounds (5.18) - (5.201, and using the 
triangle inequality we get 

Then using the fact that (4.13) holds for a. e. t, a, and that the estimate (5.25) 

s.] x (s (S I ,  Lemma 5.1 and the triangle inequality holds for any (to, ao) c (si 
imply 

- 1  j-1 j 

for all t, a c (O,T] x (OPT]. // 

Since the idea behind the algorithm defined in Theorems 5 3  and 5.4 is based on 1 

relatively simple observation that gets somewhat obscured in the notation and proofs of 

the theoremsc it is worthwhile here to briefly remark on this motivating idea. 

If we return to the approximate gain defined in (5.31, it turns out that in the 
time-invariant case each U(s.) is a principal minor of U(0). Thus what we would like to 

h A 

1 
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A h 
do is invert I + U(0) via a recursion in which all of the principal minors of I t U(0) are 
also inverted. Now by inspection U(0) can be identified with the covariance matrix of 

the random process {A [Q, 

A 

' /a 

where E(o.o. ' )  = &.I. In the signal processing literature (see for example 1311) it is 

shown that processes of this type admit "fast" filter implementations due to  their 

"near" Toeplitz covariance matrix structure. This is precisely the property we exploit. 

1 1  11 

Theorem 5.3. Define the symmetric N(nt 1) xN(nt 1) ma%& fi nwith NxN block 

entries bn where (for 0 5 j d i 5 n) 
1J 

I 
= 1 A ' Q ''b((i- j) At uA)F'(uA)Q 'Ia 
u=o 

N(nt 1) ' Let Zn denote the matrix on El 

~ n d  for each p 0,l. ..a, le t  IIn,p denote the projection 

)' n (X l... %(p+l)' 0, ... 0)' ' n'P (xl***' 1) 

For p, q = 0, 1,. ..n define (recall A = T/n) 

where z, is defined in (5.17) and 

- 
[Alia <lap ( 0) 
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Then 
A 

max IPn(Ap, Aq) - P (Ap,Aq) I 2 = 0 (lh) 

P 5 9  
p,q c {O,l,-..nI 

Proof. Recall the representation (5.14) for the optimal feedback kernel for cost 

Jd 

4 Thus we can write 

where 

(5.26) 

1 
(5.27) 

Note that I1u, (Ap) is an N(ni 1) x N(nr 1) symmetric matrix with NxN block entires 

(5.28) 

(5.29) 
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it follows from (5.27) and (5.29) that  

(n- p)N 
xn,P X (Acn-p)) = Zn 

Therefore (using (5.2611, 

NOW, 

IP P 
h 

I - Pn(APdq)12 4 T I Q  I,YyIXn,n-P-Xn,n-p 
' /a  ' /a  

A 

(Here we have used (5.181.) But using (5 .29)  and the definitions of X and X, 

And, 

i, j=O 

(5.30) 

It follows from (5.26) that  

independent of i,j.  Thus the right side of (5.30) is O(A). Hence, 
h 

max IP,(Ap,Aq) - Pn(Ap,Aq)12 = 0 (A). 
P*Q 

The result follows from the estimate above and Proposition 5.2.1 

h 
Using the extended LWB algorithm [31] we will next show that {Xn,p}~-o - can be 

computed in a total of O(n2) operations. The theorem above represents the approximate 
gain in the form 

Now fixing p and letting q vary, these products can be viewed as a convolution. Since 

convolutions have fast implementations in O(nlogn) operations, it will follow then that 
W(Ap*Aq)Jq 2 can be computed in O(n'1ogn) operations. 
h 



A 
Theorem 5.4. I X ~ , ~ ~ = ~  can be computed in O h ’ )  operations. 

A 
Proof. By definition X satisfies 

n*P 

(5.31) 

We wil l  exhibit a fast recursion for solving (5.31). 

A simple calculation shows that 

3 - U. An = A2Q1”F((i+ l)A)F’((j+l)A)Q1’a i + l r j + l  i , j  

A 
Therefore the matrix &U”, with block entries 3 - ui*j, “n i * j  = 0, l  *... n-1, can be 

i+l* j + l  
written 

h A 
Consequently* rank t6(U”,) S N << n. 
a factorization of the form 

Furthermore (and importantly [31]) 6(U? has 

P D C D’ 

with D an f lxN matrix and C an NxN signature matrix. In fact, this factorization is 

easily done by inspection: 

D = A  

I N-M 
i n  

I 1 c - I. 
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Therefore the LWR algorithm (31* p.6551 can be used to  recursively compute the 

solutions M t o  
P 

(5.32) 

p o 0, l*...n in a total of 0 (N'n') operations. With these solutions in hand we can argue 

as in the scalar Toeplitz case (see for example I3211 t o  recursively solve the system 
(5.31). These details are supplied below. 

So now consider solving the problem 

(5.33) 

h 
given X and M (from (5.32)). 

n,p- 1 P- 1 

Let P denote the N(p+1) x M matr-r composed of t e first N(p+l) rows of &to), 
P 

and let f denote the NxM matrix composed of the Np+l through N(p+l) rows of $(O). 
P 

Thus we can write 

A n  denote the N(p+1) x N(p+1) matrix composed of the northwest corner of I + U I 

E B N(p+l)xN denote 
A Y U ~  similarly let N denote the 

Let R 

and let  r denote the NxN southeast comer of R 
the matrix consisting of the first N(p+l) rows of M 
N(p+ 1)xM matrix consisting of the first N(p+ 1) rows of Xn,p. 

P 
Also let M P P' -P 

PA P 
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Now define 

u =  
P+ 1 

and consider the equation 

U 

r p+l  p+l 

Note that 

[] =Np+l'  

I;] u = [';I 
From the top of the equations in (5.34) we obtain 

I L = B - ' F  -R% V = N ~ - M  -P V. 
P P P P + l  

Substituting this into the bottom equation, we get 

P - %lN* M ] u = f  [ fp+ l -  up+l -p 

Noting that 

t 

O <  

(5.34) 

(5.35) 

(5.36) 
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BP 
0 

* 

'p+ 1'Fp "p+ 1 J 0 

(hd = NxN identity matrix), it follows 

* - lap+l Epl-L {fp - up+l N I  p 
= [=p+ 1 (5.37) 

Thus, given M and Np* Np+l can be compute1 from (5.36) and (5.37) in O(N2p) 

-operations (p >> N). Hence, in particular { Xn*p}ilo in (5.31) can be computed in a 
A 

P 

recursive manner in a total of O(n') operations.// 

In 1331 infinite dimensional Chvndrasekhar equations are derived for 
time-invariant hereditary systems without control delay. A fast algorithm based on 
approximating the Chandrasekhar equations is obtained and is shown to  possess the 

same convergence properties as reported in 110). Although there are no direct 

connections between the algorithm we developed here and the one in [33), there are 
some general connections between Chandrasekhar equations and the inversion of near 
Toeplitz systems [all. 

We note that stability of the algorithms of this section with respect to the data 

Y(t), P(t) is easily demonstrated. For suppose Y(') and F ( 0 )  were replaced by Y E  ( 0 )  

A U ~  PC ( 9  with 

Using the obvious notation, we obtain the corresponding error estimates,, 

56 



all independent of n. Substituting these errors into the appropriate places in Theorem 

5.3, it .fallows that an O(c) perturbation in the data YW, F(t) yields an O(c) perturbation 
in the estimate of the feedback kernel (all of these estimates in the sup norm). 

Another feature to  note is that although the implementation defined by Theorem 

5.3 a d  Theorem 5.4 t recursive backward in time for the computation of the feedback 
kernel (just as one would suspect -e.g. the Biccati equation is solved backward in time), 

in terms of the algorithm's utilization of the fundamental matrix YW, it is actually 
forward in time. Thus any approximating scheme for the computation of Y(t) can be 

* readily incorporated into the algorithm. This remark is also true for the 

implementation of Theorem 4.1 introduced in the beginning of this section. 

One final remark concerning the algorithm is that in the event that the point 
delays {ri)F=l do not correspond to a subset of the nodes {s$:'~, the estimate in (5.22) 

i s  only 0 (l/Jn). Thus the estimate in Theorem 5.3 would also be 0 (l/Jn). Of course 

Theorem 4.1 has the flexibility to place nodes anywhere, and it may be possible t o  
recover the stronger convergence by considering algorithms arising from different 
discretization strategies. 

We conclude this section with the following simple scalar example: 

subject to  the constraint 

t 

Since we are seeking the optimal feedback kernel P(t,a), it is not necessary to prescribe 
an initial condition above. 

The algorithm described in the beg- of the section based on the 
approximation (5.3) and the recursive inversion of I i U(s2 via the "matrix inversion 

A 
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lemma’, was programmed using a few lines of Fortran code. Because the fundamental 
solution Y(t)  to  the differential equation is easily derived on the interval (0,2), the 
exact solution was used in the algorithm. (Recall that  an O(c) error in the 

approximation of Y(. 1 results in an O(c) error in P(t,a).) 

?(e,@ 
tM.0 
LW-I 
LW.2 
tM.3 

8 tW.4 
tW-S . LW.6 
LW.7 
tM.8 
Nos9 
N1.O 

Discrethations with mesh width A = .025, . O l e  .005, were considered. The 

results for this problem coincided fairly well with the theory. We observed essentially 

linear (uniform) convergence of the feedback kernels as predicted. Tables 5.1 - 5.3 

contain these results. Table 5.4 contains values of the kernel obtained via the Biccati 

equation approach using linear spline approximations of the history space. The gain 

computed using these approximations appeared to  have converged to  two (and in some 

instances three) significant figures. The author is indebted to  Professor J.  S. Gibson for 
providing these values for comparison. 

A - .01 
t 

0.0 0. s 1.0 1.5 
2.1300 2.3951 1.6943 0.1521 

1.9844 1.1341 1.2165 0.4285 

1.4335 1.2609 0.1361 0.1391 

2.3219 2.0318 1.4110 0.5145 

1.6919 1.4770 . 1.0162 0.2810 

1.2335 1.0000 0.6727 O.oo00 
1.0510 0.9210 9.5228 O.ooo6 
0.9096 0.7916 0.3832 O.oo00 
0.1818 0.6721 0.2513 0.6oOo 
0.6886 0.5659 0.1244 O.oo00 
0.6093 0.4710 O.oo00 O.oo00 

Table 5.1 
A - .025 

t I 

a t a . 4  

LW. 8 
No.9 

0.0 
2.1881 
2.3699 
2.0210 
1.1231 
1.4112 
1.2516 
1.0180 
0.9210 
0.8oLO 
0.1029 
0.6221 

0.5 1.0 
2.4231 
2.0632 
1.1S66 
1.4912 
I .  2790 
1.0912 
0.9411 
0.8031 
0.6822 
0.5472 
0.4115 

1.1011 
I.bL13 
1.2222 
1.0213 
0.8406 
0.6165 
0.5258 
0.3855 
0.2528 
0.1252 
O.oo00 

1.5 
0.1062 
O.Sl99 
0.4252 
0.2189 
0.1381 
O.oo00 
O.oo00 
O.oo00 
O.oo00 
O.oo00 
O.oo00 
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1 

M . 2  
M . 3  

8 t+O.b 
m.5 
tM.6 
tM.7  
W . 0  
tM.9 
t+l .O 

Table 5.3 
A - .OO5 

t 

1.9724 
1.6814 
1.4W4 
1.2556 
1.05OO 
0.9036 
0.7025 
0.6039 
0.6051 

r(t.8) 

0.5 
2.3855 
2.0293 
1.72G 
1 A703 
1.2549 
1.0753 
0.9223 
0.7076 
0.6807 
0.5631 
0.6600 

m 
t 

0.0 0.5 1.0 1.5 

1.0 1 .5 
1.6919 0.7541 
1 A300 0.5859 
1.2145 0.6295 
1.0144 0.2817 
0.0346 0.1394 
0.6?14 o.Ooo0 
0.5217 O.oo00 
0.3024 O.oo00 
0.2500 o.ooO0 
0.1241 O.oo00 
o.oo00 O.oo00 

tM.0 
tM. 1 
w . 2  
tM.3 

a tM.6 
W.5 
W . 6  
tM.7 
w.l 
tM.9  
-1.0 

2.6915 

1.9639 
1.6769 
1.4243 
1.2114 
1 DL43 
0 8944 

2 * 2986 

0.171s 
Oi6706 
0.6013 

2 3742 
2.0177 
1.7215 
1.4685 
1.2409 
1.0605 
0.923t 
0.7862 
0.6620 
0.5567 
0.4690 

1.6860 
1.4355 
1.2165 
1.0150 
0.0284 
0.6650 
0.5230 
0.3801 
O.2COb 
0.1079 
0.0323 

0.7691 
0.5894 
0.4366 
0.2776 
0.1257 
0.0217 
0.0005 
0.0032 
0.0005 
0.004 
O.oo00 

59 



CONCLUDING BEMARKS, Our focus has  been on the  con t ro l  problem f o r  t he  BFDE on 
a f i n i t e  i n t e r v a l .  A n a t u r a l  q u e s t i o n  which  a r i s e s  i s  w h e t h e r  t h e  a p p r o a c h  

can be a d a p t e d  t o  t r o a t  t h e  i . n f i n i t e  t i m e  problem,  S e v e r a l  a s p e c t s  of t h e  

analysis can p robab ly  b e  ex tended  t o  t h i s  c8se.  (Some of  t h e s e  OItOn8fOn8 

appear a o n t r i v i a l  bowever). For exampler 'al though t h e  f a c t o r i z a t i o n  r e s u l t s  

and p r o j e c t i o n  i n t e g r a l s  d i r cu r red  i n  Sec t ion  2 are bared on Hilbert-Schmidt 

8rrumptions (which are not v a l i d  f o r  problems on t h e  remi- inf in i te  i n t e n 8 l ) r  

f o r  stab10 time-invariant systems the in f in i t e - t ime  f a c t o r i z a t i o n  aoon te rp r r t  

t o  (236) i r  t h e  c l a s r i c a l  WienerHopf f ac to r i za t ion .  n u t  we expect t h a t  t h e  

o p t i m a l  o o n t r o l  law can a t  l e a s t  be  f o r m u l a t e d  in t h e  same manner 8 s  in 
Theorem 23 f o r  t h e  inf in i te - t ime problem, b y  approximation scheme devised 

t h e r e a f t e r  would necessar i ly  hare t o  c o n s i d e r  a p p r o x i m a t i n g  s o ~ u t i o n s  t o  a 

Wiener-Eopf equation. In s p i r i t  ruch an approach might make con tac t  wi th  some 
work of Davis f41. 

Fundamenta l  t o  t h e  a n a l y s i s  of t h i s  r e p o r t  r i s  t h e  eXp1OitatiOXI o f  two 

p r o p e r t i e s  of t h e  f a c t o r i z a t i o n  approach  o f  f241. F i r s t ,  t h a t  t h e  e n t i r e  

serniaroup never needs approximation, and second t h a t  connections between t h e  

open l o o p  sys t em and f e e d b a c k  k e r n e l  a r e  f a i r l y  t r a n s p a r e n t  v i a  t h e  

f ac to r i za t ion .  There  p r o p e r t i e s  a r e  not uaique t o  t h e  RFDE con t ro l  problem, 

a n d  a8 a f i n a l  comment r e  r emark  t h a t  t h e  g e n e r a l  approach  s h o u l d  l e a d  t o  

approximate feedback l a r s  i n  o the r  s e t t i n g s  as rc l l .  

4 



1. Ibe kerne l  K ( t , r )  of an i n t e g r a l  operator K i s  semiseparable i f  t h e r e  e x i s t  

m a t r i x  f u n c t i o n s  H i ( t )  and G i ( 8 ) ,  i = 1,2 ,  r u c h  t h a t  K(t,s) = H l ( t ) G l ( S )  

for  8 < t o  and K(t , r )  = H 2 ( t ) G ~ ( s )  f o r  8 L t. The k e r n e l .  i o  r e p a r a b l e  i f  
we can choose E1 = HZ and G 1  = 0 2  
has  f i n i t e  rank. 

I n  t h i s  case the assoc ia ted  ope ra to r  K 

2. It i s  u n f o r t u n a t e  t h a t  a l t h o u g h  t h i r  convergence  is o b t a i n e d  using 8 

f i r s t - o r d e r  qordra ture  scheme, it i r  not a p r i o r i  avident t h a t  employing 8 

h igher  order  scheme would r e s u l t  in improved converpnce. me stwnbling 

b lock  is t h a t  the convergence ana lys i s  we have used i s  based on p r o p e r t i e s  

of t h e  fundamental matrix, which is genera l ly  only absolu te ly  continuous, 

and thus precludes any s t r a i g h t f o r n a r d  extensions. 

, 

c 
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